摘要: 大數據現在發展迅速,滲透到各行各業中,銀行也不例外。下面我們收集了銀行的大數據發展、應用、案例等相關資料,希望對大家有所幫助。......

 


▲(來源:數據觀)

對銀行大數據應用的一點思考

在《大數據時代》廣為流行之時,就拜讀了該書。當時的第一感覺是,大數據時代是對傳統統計學的一大挑戰,因為大數據的分析無需取樣,直接避開了傳統統計學的一大前提,也就避免了因樣本取樣本身帶來的誤差。得益於當前發達的網絡技術和計算機性能,大數據時代的數據分析是全量的數據分析。我想,這也是該書為什麼一經推出就如此火熱並迅速推廣至各行各業的原因。梳理一下近期的思路,談一談自己對大數據於銀行業務的一點思考。

一、 銀行擁有得天獨厚的大數據優勢

MarTech 看完書後的很長一段時間,我都在思索大數據的思維和方法如何運用在工作中。因為自己每天都在與大量的數據、各類的報表、不同的系統打交道,深感銀行數據的全面、多樣與深不可測。網上銀行、手機銀行、財富管理、信用卡平台等系統內的客戶交易數據,核心系統、信貸系統、客戶關係維護系統、計價系統等客戶的基礎信息,這些是多少外部諮詢公司可望而不可及的數據。如此豐富的信息,如果只是讓她們停留在數據階段,真是太可惜了。雖然,我已經通過不斷提升excel的操作水平來簡化和分析數據,但深感其用途遠遠不應該只是每日通報而已。如何科學利用這些數據,並以此來推動工作開展,是自己一直在思索但總有點心有餘而力不足的問題。銀行的大數據,內容龐大,超出一般人的數據處理能力;大數據於銀行,是新的競爭領域,是新的思路也是新的挑戰,理應是新的工作重點。

二、 銀行大數據應用的主要方面

銀行歸根到底是金融服務業,產品的研發、服務的開展無疑都是為了吸引和留住客戶,提升綜合競爭力,而數據則是服務好客戶的前提和保障。就自己淺顯理解,我覺得大數據可在如下幾個方面促進業務開展。   一是區域化管理。不可否認,大到國家、省份、地市,小到不同城區、不同社區、不同單位,文化差異和生活習慣是有所不同的。我們所轄的網點分佈在不同的地方,如何因地制宜地推出適合當地居民的產品和政策,必須對不同片區、不同社區、不同商圈的客戶進行統計分析,分析區域之間客戶存在的工作、消費、生活習慣差異,尋求區域內部客戶之間存在的工作、消費、生活習慣共性,以提供有針對性的營銷計劃,根據地域優勢來分配主要的業務經辦行,打造專業的隊伍服務特定的人群,促成資源的合理配置。   二是差別化服務。從IT藍圖上線起,我們中行就提出了經營模式從“以產品為中心”向“以客戶為中心”的轉變,服務模式從“標準化服務”向“個性化服務”的轉變,這些轉變落實到具體工作中,就是服務形態和方法的轉變。通過我行自身的各種渠道、各類系統整合客戶信息,已經形成了一個基本的數據庫,這個數據庫裡包含了客戶的工作、家庭、賬戶、聯繫信息等客觀數據,如果能通過借助外部平台,引入客戶喜好、情緒等主觀因素,則可以更加精準地判斷客戶的態度立場、情感傾向等,進而可以相應地分析可向客戶推薦的產品、服務、定價政策,既能迎合客戶的需求,又能提高營銷的效率和效益,真正實現“精準化營銷”。   三是風險管控。這是目前為止,我的日常工作​​中做得最多的。對於風險控制我們多數時候是被動的,到了貸款出現逾期才意識到借款人資金、信用出現了問題,對於這類現象首先追究的是客戶經理的貸後管理工作不到位。但很多逾期的貸款客戶在其資金鍊斷裂前,其經營實體和抵押物情況等是沒有太多變化的,為了儘早地發現問題,現在的貸後管理,不能僅僅局限於上門回訪,而應通過系統監控和數據分析加強預警防控能力,及時地發現客戶的資金異動,以便採取及時有效的措施防範風險。隨著信用卡的普及,信用卡的消費和還款情況一定程度上反映了持卡人的資金實力,通過分析貸款客戶的信用卡使用情況及時發現潛在風險,儘早開展貸後催收和訴訟工作,避免逾期後再催收的措手不及。

三、 銀行大數據運用可採取的措施

有了數據,如何運用數據才是更加具有挑戰性的工作。對於如何運用大數據,我覺得首先要豐富數據採集渠道,拓寬數據來源,我們掌握的客戶信息多為金融信息,數據準確可靠,但缺乏客戶行為方面的信息,可依托互聯網、電商、微博微信等社交平台充實數據資源,以更加全面了解客戶的真實需求;其次要加強內部數據的整合運用,雖然目前我們的數據多,但是數據較分散,各自為政,缺乏交叉運用,各部門各條線應加強數據的資源共享;最後是要建立和培養一支專門的數據分析隊伍,整合各專業領域的員工,負責數據的採集、簡化、分析和應用。在保護客戶隱私的前提下,還可以委託專門的數據處理公司開發專門的程序,以利於更加方便快捷地開展各項工作。......

轉貼自: 數據觀

 


留下你的回應

以訪客張貼回應

0

在此對話中的人們

Popular Tags

每月文章