摘要: Google Finance no longer provides data for historical prices or financial statements, so we say goodbye to getSymbols.google() and getFinancials.google(). (#221) They are now defunct as of quantmod 0.4-13.

摘要: Ryan Dahl, the founder of Node.js, shared his thoughts over the year participating in Google Brain Residency Program.

摘要: GBDT和xgboost在競賽和工業界使用都非常頻繁,能有效的應用到分類、回歸、排序問題,雖然使用起來不難,但是要能完整的理解還是有一點麻煩的。本文嘗試一步一步梳理GB、GBDT、xgboost,它們之間有非常緊密的聯繫,GBDT是以決策樹(CART)為基學習器的GB算法,xgboost擴展和改進了GDBT,xgboost算法更快,準確率也相對高一些。

摘要: 越來越多的平台型企業和金融機構開始重新認識區塊鏈技術,基於區塊鏈底層邏輯、技術、算法、機制創新各類產品且將之應用於各種「區塊鏈+財資」的場景中,並取得了實效,成為領先的實踐者。

摘要: 機器學習與人工智慧變得越來越熱。大數據原本在工業界中就已經炙手可熱,而基於大數據的機器學習則更加流行,因為其通過對數據的計算,可以實現數據預測、為公司提供決策依據。

摘要: 神經網絡是功能強大而又靈活的模型,在圖像,語音以及自然語言理解等學習任務上有良好的效果。儘管神經網絡很成功,但設計一個好的神經網絡仍然十分困難。為了能夠使設計神經網絡變得簡單,谷歌大腦團隊發表了一篇名為《Neural architecture search with reinforcement learning》的文章,該文章使用循環網絡來生成神經網絡中的模型描述,並用強化學習訓練這個RNN,以最大限度的提高驗證集中生成的架構的準確性。

摘要: MIT和普朗克航空系統公司的研究人員合作,提出了一類「透明設計網絡」,在李飛飛等人提出的視覺理解資料庫CLEVR上達到了99.1%的準確率,他們設計的模塊使用注意力機制,縮小了現有視覺理解模型在性能和可解釋性之間的差距,相關論文已被CVPR 2018接收,你也可以用公布的代碼構建自己的視覺理解模型。

摘要: DeepMind 的最新研究成果,對廣泛使用於語音識別、圖像識別、語義理解等領域的深度學習人工網絡RNN性能帶來顯著提升(substantially better )。研究主要在記憶時序生成模型上用了外部記憶來增強,對深度學習領域的研究有一定啟發。作者介紹,新提出的模型可用在 Introspection Network、神經圖靈機、Least-Recently Used access mechanism (LRU) 和可差分神經計算機(DNC) 。

Popular Tags

每月文章