摘要: Earlier this year, Google took the wraps off of AutoML Natural Language, an extension of its Cloud AutoML machine learning platform to the natural language processing domain. After a months-long beta, AutoML today launched in general availability for customers globally, with support for tasks like classification, sentiment analysis, and entity extraction, as well as a range of file formats, including native and scanned PDFs.

 

 

Earlier this year, Google took the wraps off of AutoML Natural Language, an extension of its Cloud AutoML machine learning platform to the natural language processing domain. After a months-long beta, AutoML today launched in general availability for customers globally, with support for tasks like classification, sentiment analysis, and entity extraction, as well as a range of file formats, including native and scanned PDFs.

By way of refresher, AutoML Natural Language taps machine learning to reveal the structure and meaning of text from emails, chat logs, social media posts, and more. It can extract information about people, places, and events both from uploaded and pasted text or Google Cloud Storage documents, and it allows users to train their own custom AI models to classify, detect, and analyze things like sentiment, entities, content, and syntax. It furthermore offers custom entity extraction, which enables the identification of domain-specific entities within documents that don’t appear in standard language models.

AutoML Natural Language has over 5,000 classification labels and allows training on up to 1 million documents up to 10MB in size, which Google says makes it an excellent fit for “complex” use cases like comprehending legal files or document segmentation for organizations with large content taxonomies. It has been improved in the months since its reveal, specifically in the areas of text and document entity extraction — Google says that AutoML Natural Language now considers additional context (such as the spatial structure and layout information of a document) for model training and prediction to improve the recognition of text in invoices, receipts, resumes, and contracts.

......

......

Full Text: venturebeat



若喜歡本文,請關注我們的臉書 Please Like our Facebook Page: Big Data In Finance

 


留下你的回應

以訪客張貼回應

0
  • 找不到回應

Popular Tags