資料分析鍊金術(七)-消費者分層-RFM模型原理與應用
BIG DATA在行銷研究中其中一個重要應用就是將消費者分群,再依照不同族群的特性擬定不同的行銷策略以達到更精準的行銷策略及更佳的行銷效益。這樣分群>擬訂策略>效益評估是個標準的行銷研究流程,這篇文章只會提到第一個步驟-分群其中的某種方式而已。
BIG DATA在行銷研究中其中一個重要應用就是將消費者分群,再依照不同族群的特性擬定不同的行銷策略以達到更精準的行銷策略及更佳的行銷效益。這樣分群>擬訂策略>效益評估是個標準的行銷研究流程,這篇文章只會提到第一個步驟-分群其中的某種方式而已。
很多人在談感情的時候,常常因為愛,所以付出許多;而通常付出越多,這份感情也更珍貴,也越捨不得放棄這段感情。這是基於人們本性上對於損失的厭惡(或者可說是沉沒成本謬誤),所以當我投入越多的金錢或情感,這個關係也相對更為重要。而消費者與品牌的關係,是不是也會有這樣的聯結呢?
DATA MINING最重要的觀念也是最常用的功能就是集群(Cluster)和關聯(Correlations)。在分析資料時,可以透過消費者(或產品)不同的特性來加以集群或測量關聯,例如35-44歲消費者的消費模式類似的分群,或年紀越高購衣頻次越高這樣的關聯分析。集群或關聯本身操作都很容易,難的事前的準備工作,也就是將消費者(或產品)標上不同的特性。能蒐集的特性越多,能分析的東西也就越多。
有天老總提了個要求,希望重新設定VP客戶分群,希望將客戶分成幾群來擬定行銷策略。CRM分析一個很重要的精神就是幫客戶分群,於是這個工作理所當然地落到我們的頭上。一般我們都會利用客戶的貢獻程度來將客戶分群,但是傳統上到底要切成幾群,或是要怎麼分一直沒有個依據,所以這次我們就利用很紅的八二法則來將客戶分群。
從這篇文章開始,會陸續帶入一些常用的分析方法,雖然分析方法百百種,但是在頭一次接觸資料時,總會有個先後順序,由淺入深,由外表到內在,由粗糙的細緻。整個資料分析的報告架構就如同說故事般,透過數據引導聽眾建立對於消費者的想像。故事的第一頁通常會描寫時間季節,寫到人物時也只會初步描述人物的年齡長相,資料分析的第一個環節也由這邊展開......
雖然近年來流行將海量資料分析稱為是資料採礦(Data Mining),但是對我來說,整個資料分析的過程也很像是幾年前很紅的漫畫"鋼之鍊金術師(簡稱鋼煉)"中的煉金術。
因為剛換工作,想趁記憶猶新的時候,把所有接觸資料庫到分析流程記錄下來,作為將來自己或是其他人的參考。