摘要: Model could recreate video from motion-blurred images and “corner cameras,” may someday retrieve 3D data from 2D medical images.
MIT researchers have developed a model that recovers valuable data lost from images and video that have been “collapsed” into lower dimensions.
The model could be used to recreate video from motion-blurred images, or from new types of cameras that capture a person’s movement around corners but only as vague one-dimensional lines. While more testing is needed, the researchers think this approach could someday could be used to convert 2D medical images into more informative — but more expensive — 3D body scans, which could benefit medical imaging in poorer nations.
...
In training, the researchers fed the CNN thousands of pairs of projections and their high-dimensional sources, called “signals.” The CNN learns pixel patterns in the projections that match those in the signals. Powering the CNN is a framework called a “variational autoencoder,” which evaluates how well the CNN outputs match its inputs across some statistical probability. From that, the model learns a “space” of all possible signals that could have produced a given projection. This creates, in essence, a type of blueprint for how to go from a projection to all possible matching signals.
...
Full Text: MIT News
若喜歡本文,請關注我們的臉書 Please Like our Facebook Page: Big Data In Finance
留下你的回應
以訪客張貼回應